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Abstract

This paper explores correlation neglect in constrained Deferred Acceptance (DA) mecha-
nisms, widely used in school choice and college admissions. Correlation neglect occurs when
students overlook the correlation between admission decisions, leading to overly aggressive ap-
plication strategies and increased unassignment risk. We conduct a laboratory experiment to
examine the presence of correlation neglect in an education matching market and evaluate in-
terventions designed to address this cognitive bias. We find that correlation neglect significantly
influences student behavior, resulting in a higher share of aggressive rank-ordered lists. Inter-
ventions such as reminders about the correlations and personalized admission probabilities have
limited impact. In contrast, switching to the Iterative DA mechanism significantly reduces the
impact of correlation neglect by making contingencies more salient. Our findings suggest that
dynamic mechanisms are potentially more effective than informational interventions in address-
ing cognitive biases in school choice, offering a promising direction for improving centralized
admissions processes.
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1 Introduction

Constrained Deferred Acceptance (DA) mechanisms are widely used in school choice and college

admissions worldwide.1 In these systems, students must carefully weigh their true preferences

against the likelihood of acceptance, balancing the desire to attend top-choice schools with the

need to secure a spot somewhere. The canonical framework developed by Chade and Smith (2006)

studies the optimal decisions when admissions probabilities are independent. However, in practice,

admissions decisions are frequently correlated due to factors such as preference homogeneity and

standardized test scores. In markets with correlated admissions, students face increased risks

of being rejected by multiple schools simultaneously, creating a sharp contrast in the strategy

formulation of independent admissions (Ali and Shorrer, 2021).

Despite the importance of accounting for these correlations, students often fail to do so — a

phenomenon known as correlation neglect. Correlation neglect is a cognitive bias where individuals

overlook or underestimate the extent of correlation between events, leading to suboptimal decision

making (Enke and Zimmermann, 2019). In constrained DA, this neglect of correlation can lead

students to overestimate their chances of admission when applying to multiple highly competitive

schools and avoid applying to safety schools (Rees-Jones et al., 2024). This oversight amplifies

the risk of unassignment, as students may end up without offers if all their high-risk choices fail.

This failure introduces new challenges for market designers to incorporate the effects of correlation

neglect into consideration.

In this paper, we examine whether students exhibit correlation neglect in a laboratory envi-

ronment designed to closely resemble real-world matching markets. We further test interventions

that could help students better account for correlated admission decisions. Specifically, we focus

on two sources of correlation neglect: the failure to think contingently and the complexity of the

problem. If failures of contingent reasoning drive correlation neglect, increasing the salience of

contingencies could help guide students toward optimal strategies. We compare the effectiveness of

two interventions designed to make the contingencies more salient: providing reminders to students

1In Chile (Larroucau et al., 2024), China (Chen and Kesten, 2017; Wang et al., 2021), England, New York City
(Haeringer and Klijn, 2009).
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about the correlations and implementing an Iterative DA mechanism. Providing explicit reminders

about potential correlations in the admissions process directly prompts students to consider the

interdependence of their school choices. This approach aligns with existing research where re-

minders have been used as nudge interventions (Bettinger et al., 2012; Bhargava and Manoli, 2015;

Finkelstein and Notowidigdo, 2019). The Iterative DA mechanism involves multiple stages of ap-

plication and acceptance, allowing students to observe the outcomes of earlier stages and adjust

their subsequent choices accordingly. This dynamic process naturally highlights the contingent

nature of admissions. To tackle the challenge of complexity, we introduce personalized admission

probabilities. We simplify the decision-making process by providing students with individualized

estimates of their chances of acceptance at each school. These estimates incorporate information

about the admissions correlations, helping students make more informed choices that account for

this interdependence.

In our controlled school choice experiment, four students are matched with four schools using a

constrained DA mechanism with two possible choices. Students’ priorities are based on standardized

score ranking and are public information. Students are also informed about their preferences and

the distribution of others’ preferences. This setup closely mimics the college admission markets

in China, Turkey, and many other countries (Calsamiglia et al., 2010), where the uncertainty of

admission arises from the preferences and strategies of other students. The top two ranked students

have no incentive to deviate from truth-telling. Therefore, we use computers to simulate the top

two students, assume they truthfully report their preferences and focus on analyzing the strategies

of the third-ranked student.2 Students repeatedly play the school choice game for 15 rounds with

different preferences and payoff structures. In our design, a rational student should always prefer

a school choice portfolio with reach and safety schools in all rounds.3 In contrast, a student

exhibiting correlation neglect may prefer an aggressive strategy without a safe school. The reason

is that when students fail to think contingently and are rejected by their top choice, they tend to be

2Using computers to act as participants is not rare in school choices. See Chen et al. (2018).
3Following Ali and Shorrer (2021), we classify colleges as follows: A ”match” is the school an applicant would

choose if they could only apply to one, offering the best balance between acceptance rate and expected payoff. A
”safety school” is less selective than the match, with a higher acceptance rate but a lower payoff, making it a safer but
less desirable option. A ”reach” is more selective than the match, with high potential rewards but a low acceptance
rate, making it a less realistic primary target.
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overly optimistic about their admission chances in their second-most preferred schools. This failure

introduces biases when comparing the expected utilities of school portfolios with and without a

safety school. We design the school choice environment in each round to introduce variations in

the size of the bias driven by correlation neglect. We should observe a higher share of an aggressive

strategy for a fixed group of students when the bias is larger. Therefore, the change in the ratio

of aggressive school portfolios relative to the bias size in each round helps identify the existence of

correlation neglect. This identification strategy is similar to those used to identify inattention in

Hossain and Morgan (2006) and Chetty et al. (2009).

We find that the bias induced by correlation neglect significantly increases the share of aggressive

rank-ordered lists (ROL). A one standard deviation increase in the bias leads to about 17% more

mistakes, even after controlling for a rich set of characteristics, including student demographics,

measures of risk aversion, ambiguity aversion and contingent thinking ability, and round and session

fixed effects. An undesired consequence of correlation neglect and submitting aggressive ROL in

a constrained DA mechanism is the increased risk of unassignment. We find that students are

less likely to be unassigned in rounds with smaller bias, and a one standard deviation decrease

in the bias results in about a 25% decrease in the ratio of unassigned students. These results

suggest that a substantial fraction of students are likely to exhibit correlation neglect in school

choices. One concern could be that comparisons across rounds might be invalid if students learn

from the admission outcomes of previous rounds. For example, if students are unassigned in a prior

round, they might adopt safer strategies in subsequent rounds. To address this concern, we plot

the proportion of aggressive ROLs by round and find that this proportion does not decrease in later

rounds compared to earlier ones, thereby eliminating the presence of learning effects.

Our paper further shows that providing reminders and personalized admission probabilities have

a limited impact on reducing correlation neglect. The share of aggressive ROLs in each round of

the reminder treatment is almost identical to those in the baseline group. Although the treatment

providing personalized admission chances lowers the average ratio of aggressive ROLs, it does

not change the “speed” at which the ratio of students with correlation neglect responds to larger

biases. The null effect of the reminder treatment is consistent with the findings of Rees-Jones et al.
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(2024), where various interventions aimed at improving students’ understanding of the correlations

in admission probabilities do not eliminate cognitive biases in their school choices. Additionally, our

Computation treatment replicates the null effect observed in the lottery treatment of Rees-Jones

et al. (2024), where students are provided with probabilities of enrolling in their selected schools

and the likelihood of being unmatched. The persistence of substantial biases in both our study

and that of Rees-Jones et al. (2024) suggests that correlation neglect in school choice is not easily

rectified.

In contrast, switching to an Iterative DA mechanism lowers the rate at which the ratio of

aggressive ROLs changes in response to larger biases by 4.8%. It also reduces the risk of being

unassigned. This improvement could potentially arise from the nature of the dynamic mechanism,

which makes the correlation in admission probabilities more apparent during the decision-making

process. As discussed in Bó and Hakimov (2024), the primary advantage of the equilibrium strategy

lies in its straightforward mechanics, where agents select their preferred option from a menu rather

than submitting a ROL that represents their preferences. Notably, there has been growing interest

from policymakers in implementing dynamic college admission mechanisms, as evidenced by recent

reforms in college admissions in France, Inner Mongolia, Germany, and Tunisia (Bó and Hakimov,

2022; Gong and Liang, 2024; Luflade, 2018).

This paper contributes to three strands of literature. Firstly, we contribute to the growing

literature on correlation neglect. Enke and Zimmermann (2019) show that individuals tend to treat

correlated signals as if they were independent. Rees-Jones et al. (2024) explore the implications

of correlation neglect with the constrained DA and find that correlation-neglectful agents will be

overly aggressive in filling slots in a preference submission. Rees-Jones et al. (2024) has the closest

features to our paper. However, we diverge from Rees-Jones et al. (2024) in two notable ways.

First, we design the school choice game so that students face uncertainty in admissions due to

incomplete information about others’ preferences. In contrast, the uncertainty is imposed in Rees-

Jones et al. (2024) exogenously. Second, we investigate the underlying drivers of correlation neglect

and distinguish successful interventions from unsuccessful ones that aim to alleviate the mistakes

of correlation neglect.
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We also contribute to the burgeoning literature on behavioral market design in school choices.

Abundant research has documented preference misrepresentations in strategy-proof mechanisms

and proposed candidate theories to explain these misrepresentations, including failures of con-

tingent reasoning, overconfidence, correlation neglect, and more (Rees-Jones and Shorrer, 2023;

Dreyfuss et al., 2022; Guillen and Hakimov, 2017; Kapor et al., 2020; Lucas and Mbiti, 2012;

Meisner and von Wangenheim, 2023; Pan, 2019; Rees-Jones, 2017; Rees-Jones, 2018a). Despite the

abundant empirical evidence and theoretical explanations, there is relatively little research investi-

gating potential remedies, with some recent exceptions. Arteaga et al. (2022) and Larroucau et al.

(2024) have implemented field interventions and found that real-time provisions of personalized

admission risks can reduce application risk and increase placement rates. Our findings complement

this literature and suggest that in addition to information provision, switching the simultaneous

mechanism to the iterative mechanism may also help address students’ correlation neglect in school

choices.

Lastly, we make contributions to the literature on dynamic matching mechanisms. A few re-

cent papers experimentally evaluate various types of iterative mechanisms. Klijn et al. (2019) find

no statistically significant difference in the proportion of stable outcomes between the standard

and dynamic student-proposing DA. Gong and Liang (2024) find that, compared to DA, the Inner

Mongolia mechanism exhibits higher truth-telling rates in the environment with low preference cor-

relation. However, there is a higher proportion of stable outcomes under DA in the high preference

correlation environment.4 Bó and Hakimov (2020) compared two types of IDA with DA: one where

students are only informed of the admission outcomes (IDAM-NC) and one where the tentative

cutoff values of each college are provided (IDAM). They find that both dynamic mechanisms de-

liver significantly more stable outcomes than DA. The authors associate the benefits of iterative

mechanisms relative to DA with the learning opportunities from the feedback provided between

steps of the iterative mechanisms. Our findings complement this literature by suggesting an ad-

ditional channel through which iterative mechanisms improve matching outcomes in centralized

school choices.

4It is worth noting that the dynamic mechanism used in Gong and Liang (2024) differs from IDA. Therefore, one
might remember that the results here are not directly comparable.
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The remainder of the paper is structured as follows. Section 2 outlines the school choice problem

and a theoretical framework to identify correlation neglect; we then introduce the experimental

design in Section 3. Section 4 presents the main results, and we conclude with Section 5.

2 The school choice problem

2.1 A theoretical framework of correlation neglect

We model the ability to think contingently as a scarce resource. Consider a student i’s expected

utility Ui is a function of the CN parameter θ, and it is the sum of the following two components:

Uc is the expected utility calculated “correctly” with the conditional school admission probabilities,

and bias is the biased term between the expected utility and the utility calculated “incorrectly”

using the unconditional probabilities, thus bias = Uu − Uc. Due to failure to think contingently,

she perceives the expected utility to be

Ui(θ) = Uc + θ ∗ bias, (1)

where θ is the degree of correlation neglect with θ = 0 as the standard case of no correlation neglect.

When θ = 1, she exhibits full correlation neglect.

The correlation neglect parameter, θ, is a function of the salience s of the contingencies and

complexity of calculating admission probabilities N . We assume that the correlation neglect θ is

decreasing in the salience s and increasing in the complexity N :

θ = θ(s,N),
∂θ

∂s
< 0,

∂θ

∂N
> 0

This model closely follows the framework used to study inattention and has clear implications

for identifying correlation neglect and designing interventions to alleviate mistakes driven by it

(DellaVigna, 2009). We discuss the identification and treatments in detail in the following two

subsections.
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2.2 The school choice task

We consider a school choice problem with four students and four schools (A, B, C, D) where each

school has a capacity of one seat. Students’ priorities are determined by their scores on a standard

test and they are aware of their own score and ranks. Students’ preferences are randomly drawn from

Type I (A ≻ B ≻ C ≻ D) and Type II (C ≻ D ≻ B ≻ A).5 Students know their own preferences

but not other students’ preferences. Instead, they are aware of the preference distribution in the

student population, namely, the ratio of students with Type I or Type II preference. Students are

matched to schools using a constrained DA mechanism with two choices.

Although, in theory, the top two ranked students have no incentive to deviate from truth-telling,

it is documented that students often deviate from truth-telling even with strategy-proof mechanisms

in practice (Hassidim et al., 2017; Rees-Jones, 2018b; Rees-Jones and Skowronek, 2018; Shorrer and

Sóvágó, 2023). To reduce the strategic uncertainties related to the top students, we use computers

as the top two ranked students and they are truth-telling throughout the task. We explained this

approach clearly to all participants.

Unlike the top students, the third-ranked student has no dominant strategy and must compare

the expected utility of different strategies when constructing the optimal ROL. We illustrate this

with a numeric example in Table 1. Panel A shows the preference for both types and the probability

of a student being Type I. Panel B contrasts the expected payoffs of different strategies. Although

an aggressive strategy listing schools C and D may seem optimal when ignoring the correlations

of admission probabilities to different schools, accounting for them reveals that combining a reach

and a safety school offers the highest payoff.

Our numerical example in Table 1 underscores the fundamental principles in our school choice

setups: the admission uncertainty arises from the uncertainty about others’ preference types, and

the rejection (if it happens) by the school ranked first in the ROL reveals new information about

the preference distributions. Failure to think through the possible contingencies leads students to

assess their admission chances incorrectly.

5This preference setup resembles the common trait in real-world school choice matching markets. Schools A
and B can be seen as high-quality but out-of-town schools. Schools C and D may have lower quality but are local.
Students’ preferences could broadly be classified as those who prefer higher quality (Type I) or those who prefer local
schools (Type II).
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Table 2 further illustrates this intuition. Panel A lists all three possible contingencies and

admission probabilities for the third-ranked student with a Type II preference. Rejection from

the top choice (School C) reduces the possible contingencies from all three to only the last two.

The unconditional probability of being admitted to School D is 2p ∗ (1 − p) + p2, higher than the

conditional probability of 2p∗(1−p)
1−p2

, regardless of the percentage of students with Type I preference

in the population p. Figure 1 compares the admission probabilities to School D for the students

that we focus on, conditional (solid line) and unconditional (dashed line) on rejecting by School A.

This comparison shows that when students fail to update the possible contingencies when rejected

by their top choice, they tend to be overly optimistic about their admission chances in their second-

most preferred schools.

We propose to exploit the variation across different rounds in the baseline experiment to identify

the existence of CN. To see this, we compare the expected utility between listing School C and

D, and School C and B. Following the definition in equation (1) in section 2, the difference in the

expected utility of these two strategies is:

Ui(θ)
CD − Ui(θ)

CB = (UCD
c − UCB

c ) + θ ∗ γ (2)

where UCD
c −UCB

c is the differences in the expected utility of these two strategies using conditional

probabilities; UCD
u and UCB

u are the expected utility of listing schools CD and CB calculated with

unconditional admission probabilities;

γ = (UCD
u − UCB

u )− (UCD
c − UCB

c ) (3)

is the bias term induced by correlation neglect; θ is the correlation neglect parameter. Equation (2)

shows that, holding the differences in expected utility constant, the larger the bias term, the more

likely students with correlation neglect would perceive listing CD as the most favorable option.

In our baseline treatment, students play the school choice problem for 15 rounds. In each

round, the school choice environment stays the same while students’ preferences and the preference

distribution change. As a result, the bias term due to correlation neglect differs in each round.
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Table 3 shows how the bias term changes with the preferences and the preference distribution used

in each round. Columns 6 and 7 show that listing CB has the highest expected utility in all rounds,

and the bias terms differ in each round. As a result, rational students will always choose CB, while

students with correlation neglect will choose CD. This variation in the bias allows us to identify

the existence of correlation neglect.

This identification strategy is similar to those used to identify inattention in Hossain and Morgan

(2006) and Chetty et al. (2009) in the section on alcohol taxes. Hossain and Morgan (2006)

compared the average revenue from two auctions using a field experiment. They sell CDs with

different reserve prices and shipping costs in two auctions, holding constant the total cost. The

change in reserve price guarantees that the two auctions are equivalent to a fully attentive bidder.

But if bidders are inattentive, the average revenue should be higher in the auction with lower

reserve prices and higher shipping costs. In our experiment, if students have no correlation neglect,

the bias term should not impact the ratio of students choosing the aggressive strategy. There is a

slight difference between our strategy and those used in Hossain and Morgan (2006). In Hossain

and Morgan (2006), the two auctions have identical costs. In different rounds of our experiment,

though the optimal strategy is always submitting CB, the differences in expected utility between

submitting CB and CD are slightly different. Even though these differences should not affect

fully rational students’ decision-making, we control them whenever we compare students’ strategies

across different rounds.

Our Hypothesis 1 summarizes this identification strategy.

Hypothesis 1. If students exhibit correlation neglect in the school choice task, the bias term should

be positively associated with the share of aggressive ROL.

3 Experimental design

In this section, we use three treatments to address two potential drivers of correlation neglect: the

salience of contingencies and the complexity involved in calculating admission probabilities. We

adopt a between-subject design, and we describe the treatments below. Instructions are available
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in the Appendix.

3.1 Treatment groups

Our first treatment is an intervention designed to highlight the correlated admission chances. This

Reminder treatment shares our baseline group’s school choice setup, with one notable exception.

We provide students with a message indicating the correlation between being accepted to the sec-

ond and first choices.

“Hint: Please note the possible correlation between being accepted to the second choice and being

accepted to the first choice school.”

This message is displayed on the same page where students submit their preferences. Further-

more, we ask students to estimate the probability of getting into the second choice when rejected

by the first choice.

“Please estimate the probability that you will be accepted to the second choice of your applica-

tions if you are not accepted to the first choice. (1-100)% .”

In our second treatment, we switch to an Iterative DA (IDA)mechanism. Unlike the Deferred

Acceptance mechanism, where students submit a ROL, IDA asks students to apply to one school

at each step. Schools tentatively retain no more applications than their capacity, and if a school

receives more applications than it can accept, it rejects the students with lower priorities and retains

the remaining applications. After each step, students are informed whether their application was

rejected or accepted.6 If a student is rejected, they can apply to any other school with empty seats

or a lower cutoff score. Students are not allowed to change their choices while tentatively selected

by any school. For those who get accepted in their first-choice schools, we ask them to fill in the

second choice as if the first choice rejected them.

6In real-world applications, IDA may provide students with the cutoff information after each step. In our setup,
this information is redundant; therefore, we do not provide the cutoff information to students.
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Unlike the standard DA mechanism, IDA does not have a dominant strategy, and the Student

Optimal Stable Matching is an equilibrium outcome under Ordinal Perfect Bayesian Equilibrium

(Bó and Hakimov, 2022). While IDA has “worse” incentive properties for students than DA, in

practice, students might benefit from the iterative nature of the game. Participants might find these

procedures simpler to understand or more transparent. Bó and Hakimov (2020) experimentally

compare the IDA with DA and find that a significantly higher proportion of stable outcomes is

reached under the IDA. They associate the benefits of iterative mechanisms with the feedback

on the outcome of the previous application they provide to students between steps. In our IDA

treatment, we focus on another channel where the iterative mechanisms may help students in

centralized school choices. The iterative nature of IDA may render the correlation nature of our

school choice environments highly salient.

To summarize, if the reminder messages and the adoption of the IDA mechanism make the

correlation in admissions more salient, these treatments should reduce the rate at which the ratio

of students submitting aggressive ROLs increases in response to larger biases. We summarize these

results in the following hypothesis.

Hypothesis 2. If ∂θ
∂s < 0, the Reminder and IDA treatments should reduce the rate at which the

ratio of students submitting aggressive ROL in response to larger biases compared to the baseline

results.

Both Reminder and IDA treatments focus on helping students consider the salience of the

correlated admission probabilities. However, given the complexity of the school choice environment,

it is still a challenging task for students to report the optimal ROL. One significant hurdle is that

students must perform the Bayesian updating calculations to realize that choosing Schools C and

D is not the optimal strategy. To address this issue, we designed a Computation treatment

that provides students with individualized calculations of admission probabilities for all possible

application strategies. As assumed in the model, ∂θ
∂N > 0, the computation treatment should help

students with correlation neglect to avoid aggressive strategies.

Hypothesis 3. If ∂θ
∂N > 0, the Computation treatment should lower the speed with which the ratio

of students submitting aggressive ROL in response to larger biases, compared to the baseline results.
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3.2 Experimental procedures

We conducted the experiment in the Smith Economics Experimental Center laboratory at Shanghai

Jiaotong University in China. Participants were undergraduate and graduate students from this

university. A total number of 217 subjects participated in 14 online sessions between 2021 and

2023. Each session lasted approximately one hour, with participants receiving an average payment

of 40.96 yuan, including the show-up fee. We programmed the experiment with oTree (Chen et al.,

2016).

Table 4 outlines the procedures and timeline of the experiment. The first part involves the

standard school choice problem. To assess contingent thinking abilities, we adopted the measures

for Bayesian updating (BU) and non-probabilistic reasoning (NPR) from Levin et al. (2016). Unlike

Levin et al. (2016), we did not differentiate between BU and NPR skills; instead, we created a proxy

for contingent thinking by combining all four questions. We also followed the methodology of Holt

and Laury (2002) to assess each subject’s risk attitude and ambiguity aversion. Finally, we collected

demographic information, details about participants’ past college application experiences, and their

attitudes toward general college application strategies in the post-survey.

Table 5 presents the summary statistics for students’ demographic characteristics, risk attitudes

and ROL types by treatments. Participants in the baseline group tend to be slightly older and more

likely to be female and graduate students than those in the three treatment groups. This may be

due to the narrow age range of 18 to 25.7 Table 5 shows no significant difference across the groups

regarding risk aversion and contingent thinking abilities. As shown in Figure 1, we set up the

school choice experiments so that selecting Schools C and B is always the optimal strategy in each

experiment round. Based on this, we categorize students’ strategies into three types: optimal ROL

with Schools C and B, aggressive ROL with Schools C and D, and other strategies. The third panel

in Table 5 reveals that a significant proportion of students make behavioral mistakes and choose

the aggressive strategy, resulting in about 5 percent of students remaining unassigned.

7We should not worry about the small imbalance between treatments since we control for all observed individual
characteristics in our regression analysis in later sections.
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4 Results

4.1 Identification of correlation neglect

We first present the cognitive biases caused by correlation neglect. Hypothesis 1 suggests that we

should observe a higher share of aggressive ROL in rounds with larger biases. Figure 2 illustrates

the relationship between the share of aggressive ROLs and the size of the bias term in each round

of baseline treatment, revealing a strong positive correlation.

To quantify this relationship, we estimate the following empirical specification:

yit = α+ β1 ∗ biast + β2 ∗Xit + δi + λit + εit, (4)

where yit denotes the admission outcomes, including whether a student submits an aggressive ROL

or is unassigned to her ROL; the biast measures the size of the bias γ defined in Eq (2) in Section

2. Here, the subscripts i, t denote the individual and round, respectively. Xit includes subjects’

demographics, such as age, gender, risk aversion, ambiguity aversion, and contingent thinking

ability. δi and λit denote the session and round fixed effects, respectively. εit is the residual.

Table 6 reports the estimation results of Eq (4). The first column quantifies the visual pattern

observed in Figure 2. Column (2) repeats this exercise with more demographic variables, including

measures of risk aversion, ambiguity aversion, contingent thinking ability, and round and session

fixed effects. In both model specifications, the bias term significantly increases the share of ag-

gressive ROL. One standard deviation increase in the bias leads to about 17% more mistakes in

ROL.8 Additionally, being male, students with lower NCEE scores, and low contingency thinking

ability are correlated to more correlation neglect. We find similar results in columns (3) and (4)

with observations in all four treatments.

We also consider the risks of being unassigned in columns (5) to (8) in Table 6. We expect

to observe fewer unassigned students in rounds with smaller biases. We use whether a student

is unassigned to her ROL as the dependent variable. Students are less likely to be unassigned in

8The standard deviation of the bias term in the baseline sample is 10.5584. One standard deviation increase in
the bias leads to 10.5584*0.0114=0.1203, a 12 percentage points increase in the proportion of aggressive ROLs. This
represents a 17% increase, relative to the ratio of aggressive ROLs in the baseline group.
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rounds with smaller biases. Specifically, a one standard deviation decrease in the bias leads to

about a 25% reduction in the ratio of unassigned students in the baseline group.9

One concern is that students might adapt to the bias if they learn from the admission outcomes

of previous rounds. For example, an unassigned student ceases to adopt an aggressive strategy in

the subsequent round. If this is the case, the reduction in the rate of mistakes is due to her past

experience, not the bias per se. We find this is not the case. To see this, we plot the share of

aggressive ROL by round and treatment group in Figure 3. The share of aggressive ROL does not

exhibit a declining trend across rounds.

4.2 Treatment effects

We proceed to examine our treatments’ impacts of different interventions. We use the following

empirical specification to examine the treatments’ effects:

yit = α+ β1 ∗ Treatmenti + β2 ∗ biast + β3 ∗ Treatmenti ∗ biast + β4 ∗Xit + δi + λit + εit (5)

The notations yit, bias, Xit, δi, γt and εit are consistent with Eq. (4), where the subscripts i, t denote

the individual and round, respectively. We adopt a between-subject design so that treatments do

not vary by session.

The parameter of interest is β3. Hypotheses 2 and 3 suggest that if our treatments make the

correlation in admission probabilities more salient and reduce computational complexity, we should

observe a negative β3.

Table 7 presents these results separately for each of the three treatments. Columns (1) and (3)

show that the Reminder and Computation treatments have negligible effects on students’ decision-

making, with the coefficients for the interaction term being both economically and statistically

insignificant. In contrast, Column (2) reports a significant impact of the IDA treatment on reducing

the proportion of students making aggressive school choices. β3 is significantly negative at the 1%

significance level. β3 = −0.0015, given that the mean value of bias in the baseline and IDA groups

is 32.2967, it translates to a 4.8 percent reduction of the share of aggressive ROL at the mean

9Following the last footnote, the percentage is calculated as -0.0013*10.5527/0.054=-0.2540.
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compared to the baseline results.

The null effect of the Reminder treatment is consistent with Rees-Jones et al. (2024), where

multiple treatments targeted to improve students’ awareness of the correlations in admission proba-

bilities failed to remove the bias in students’ school choices. Moreover, our Computation treatment

replicates the findings of null effect from the lottery treatment in Rees-Jones et al. (2024) where

they provide students with probabilities of enrolling in students’ choices and the probability of being

unmatched. The fact that quantitatively large bias remains in the two different environments that

our paper and Rees-Jones et al. (2024) suggests that the correlation neglect in the school choice

context cannot be easily eliminated.

Our findings suggest that reducing the complexity of computing conditional probabilities helps

prevent students from making aggressive ROLs. However, this decrease in aggressive behaviour is

not due to increased awareness of admission correlations, as the interaction between the Computa-

tion treatment and the bias term does not significantly affect the likelihood of choosing aggressive

ROLs. Therefore, our results indicate that simplifying the computation process may correct be-

havioral biases in making aggressive school choices unrelated to correlation neglect.

In contrast, the results from the IDA treatment suggest that the iterative mechanisms could

effectively reduce correlation neglect in school choices. We argue that this improvement arises from

the nature of the dynamic mechanism, which makes the correlation in admission probabilities more

apparent to students in the decision-making process. As discussed in Bó and Hakimov (2024), the

simple mechanics of the equilibrium strategy, in which agents ”pick” the object they would like to

have from a menu, instead of submitting a ranking of objects representing their preferences, is the

main driver of the superior. Interestingly, there has been increasing demand from policymakers

for the use of dynamic college admission mechanisms, e.g., recent reforms of college admissions in

France, Inner-Mongolia, Germany, and Tunisia (Bó and Hakimov, 2022; Gong and Liang, 2024;

Luflade, 2018).
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5 Concluding remarks

Our paper examines correlation neglect, a specific type of non-standard decision-making (DellaV-

igna, 2009). This concept applies to various areas such as stock return predictions (Cohen and

Frazzini, 2008), financial investments (Hong and Stein, 1999; Huberman and Regev, 2001), voting

behavior (Levy and Razin, 2015), auctions (Hossain and Morgan, 2006), and school choices (Ali

and Shorrer, 2021; Rees-Jones et al., 2024). In the college application process, where students

select a limited number of schools from a long list, they commonly neglect the correlation between

admission probabilities. We investigate whether students exhibit correlation neglect (CN) in a lab-

oratory setting and explore possible interventions to reduce this cognitive bias. Our study would

shed light on the design of such college admissions processes, potentially impacting over 23% of

the world population (World Bank, 2022) in countries such as Australia, Chile, China, Germany,

Greece, Hungary, Ireland, Russia, Spain, Turkey, and the United Kingdom (Chen et al., 2020).

We designed a school choice experiment under a constrained DA system, where students could

choose two out of four schools based on their preferences. In our experiment, students who expe-

rience correlation neglect prefer a more aggressive strategy. We introduce cognitive bias in each

round of the experiment and use variations in school choices to identify correlation neglect. Our

design closely mirrors the real-world school application problem, where students face uncertainty

in admissions due to incomplete information about others’ preferences, even though they are fully

informed of their own test scores and rankings. Furthermore, we design and test three different

interventions to reduce decision-making mistakes caused by correlation neglect. These interven-

tions aim to make cognitive bias more salient and simplify the calculation of accurate admission

correlations.

Our estimation results show that reminding students of the correlation between school ad-

missions has little impact on the proportion of students making aggressive school choices. On

the other hand, reducing the complexity of computing conditional probabilities significantly helps

prevent students from deviating from their optimal choices, although this reduction in aggressive

behavior is not due to increased awareness of admission correlations. The Iterative DA mechanism,

however, effectively reduces correlation neglect in school choices as it informs students of the ad-
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mission results after submitting their ROLs by order. Interestingly, there is an increasing demand

from policymakers for the use of dynamic college admission mechanisms in real-world applications.

This trend is evident in recent college admissions reforms of college admissions in France, Inner

Mongolia, Germany, and Tunisia (Bó and Hakimov, 2022; Gong and Liang, 2024; Luflade, 2018).
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Figures and tables

Figure 1: Comparison between the unconditional and conditional probability of admission

Note: This figure compares the probability of admission to School D for the student ranked third with type II
preference. The x-axis is the percentage of students with type I preference in the student population. The y-axis is
the admission probability.
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Figure 2: The size of the bias and share of aggressive ROL in the Baseline group

Note: This figure plots the percentage of aggressive ROL in each round against the size of the bias in each round of
school choice setup in our baseline group. The bias term is calculated as bias = (u(cd)u − u(cb)u)− (u(cd)c − u(cb)c)
The aggressive ROL is defined as listing both school C and D.
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Figure 3: The share of aggressive ROL by round and treatment group

Note: This figure plots the percentage of aggressive ROL in each round. The aggressive ROL is defined as listing
both school C and D.
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Table 1: A Numerical example of correlation neglect

Panel A: Setup

Type I preference Type II preference Ratio of Type I
School A B C D C D B A
Utility 100 45 40 10 100 45 40 10 70%

Panel B: Expected utility for the student ranked third

ROL CD CB CA DB DA BA
Unconditional 89.95 69.4 40.9 61.35 41.85 21.30
Conditional 86.06 89.00 50.76 80.95 50.95 20.40

Note: Panel A shows the utility of being admitted to each school for both Type I and II. The first row in
Panel B lists all possible ROLs with two schools. The second and the third row report the expected utility
of the corresponding ROL calculated using the unconditional and conditional probabilities, respectively.
The conditioning event is rejection from the school listed first.
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Table 2: Possible contingencies and admission probability for the student ranked third
with type II preference

Panel A: Possible contingencies

Contingency Types of top 2 students Probability Seats taken
1 Both type I p2 A and B
2 Type I and II 2p ∗ (1− p) A and C
3 Both type II (1− p)2 C and D

Panel B: Admission probabilities

Conditional probability p(D|rejC) = 2p∗(1−p)
1−p2

p(B|rejC) = 1

Unconditional probability p(D) = 2p ∗ (1− p) + p2 p(B) = 1− p2

Note: Panel A presents all three possible scenarios of the top 2 students’ types. Panel B shows the

conditional and unconditional probabilities of being admitted to School D and School B, respec-

tively. p is the percentage of students with type I preference.
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Table 3: The school choice setup for each round of the experiment

Round School payoffs Ratio of Type I Expected utility differences Bias

A B C D UCB
c − UCD

c

1 10 40 100 45 0.7 2.94 23.49
2 10 40 95 45 0.7 2.94 23.49
3 10 50 120 55 0.75 2.86 32.54
4 10 50 95 55 0.8 1.11 35.91
5 10 50 90 55 0.8 1.11 35.91
6 10 55 100 60 0.8 1.67 39.47
7 10 35 100 40 0.65 3.48 18.37
8 10 35 100 40 0.7 2.06 20.61
9 10 45 95 50 0.75 2.14 29.33
10 10 40 95 45 0.7 2.94 23.49
11 10 40 120 45 0.65 4.55 20.93
12 10 50 100 55 0.75 2.86 32.54
13 10 70 120 75 0.8 3.33 50.13
14 10 65 100 70 0.85 0.68 51.06
15 10 60 90 65 0.85 0.27 47.16

Note: This table shows the school choice setups in each round of the experiment. The ratio of Type I is the

ratio of students with Type I preference in the population. UCD
u is the expected utility of choosing School

C and D calculated with unconditional admission probability. UCD
c is the expected utility of choosing

School C and D calculated with conditional admission probability. The expected utility differences using

conditional probabilities between strategies CB and CD is defined as UCB
c − UCD

c . The bias term in the

last column is defined as UCD
u − UCB

u )− (UCD
c − UCB

c )
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Table 4: Timeline of treatment groups in the experiment

Treatments Part 1 Part 2 Part 3 Part 4

Baseline 15 rounds of task CT/IQ test Risk/Ambiguity attitude Survey
Reminder Task and nudge messages CT/IQ test Risk/Ambiguity attitude Survey
Iterative DA Two rounds of submissions CT/IQ test Risk/Ambiguity attitude Survey
Computation Task and probabilities CT/IQ test Risk/Ambiguity attitude Survey

Note: We adopt a between-subject design. Contingent thinking ability (CT) is measured by the answers to four

questions in Levin et al. (2016). We construct the proxy of IQ using the Raven’s advanced progressive matrices.

Risk-aversion is measured by the switch point following the classic Holt and Laury (2002) task, the later one

switches the more risk aversion she is; so is ambiguity aversion. We collect their person characteristics, historical

college application experience, and their attitude towards the general strategies to apply to colleges.
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Table 5: Summary statistics of subjects’ ROL types and demographics

Baseline T1.Reminder T2.Iterative DA T3.Computation

Level Level Difference Level Difference Level Difference

Age 22.69 21.92 0.763*** 22.17 0.517*** 21.88 0.813***
Male (%) 0.48 0.56 -0.081*** 0.64 -0.159*** 0.50 -0.021
Undergraduates (%) 0.31 0.56 -0.08*** 0.49 -0.177*** 0.50 -0.188***
NCEE score 611.85 636.53 -24.676*** 588.13 23.727*** 601.66 10.193*

Risk aversion (0-10) 7.15 6.95 0.191* 6.98 0.167* 7.20 -0.051
Contingent score 0.77 0.86 -0.093* 0.85 -0.08 0.91 -0.14***
Ambiguity aversion 12.56 12.53 0.032 11.94 0.626** 12.48 0.080

CD (%) 0.69 0.70 -0.011 0.72 -0.023 0.40 0.295***
CB (%) 0.22 0.24 -0.022 0.22 -0.000 0.55 -0.330***
Other (%) 0.08 0.05 0.033*** 0.06 0.024* 0.05 -0.035***
Unassigned (%) 0.05 0.04 0.015 0.04 0.012 0.03 0.020*
Num. of Obs. 720 990 - 705 - 840 -

Note: This table presents the summary statistics of students’ demographics, strategies and outcomes in the school

choice experiments, by treatment groups. The NCEE score is student’s test score in China’s college entrance

exam. The risk attitude and ambiguity aversion are measured following Holt and Laury (2002). The contingent

ability is constructed as summing up the scores for all four questions in Levin et al. (2016). We test the significance

of the mean differences between the Baseline group and each treatment group using t statistics and present the

corresponding significance level with *** p < 0.01, ** p < 0.05, * p < 0.1.

29



Table 6: The size of the bias induced by correlation neglect and share of aggressive ROL

Aggressive ROL Unassigned

Baseline group All groups Baseline group All groups

(1) (2) (3) (4) (5) (6) (7) (8)

bias 0.0041* 0.0114** 0.0048*** 0.0080*** -0.0020* -0.0013*** -0.0015*** -0.0026***
(0.0016) (0.0038) (0.0008) (0.0018) (0.0008) (0.0000) (0.0003) (0.0000)

Male 0.1974*** 0.0790*** 0.0342 0.0001
(0.0398) (0.0172) (0.0215) (0.0064)

NCEE score -0.0008*** -0.0002** -0.0000 0.0000
(0.0002) (0.0001) (0.0001) (0.0000)

Age 0.0086 -0.0016 -0.0048 -0.0009
(0.0096) (0.0045) (0.0054) (0.0022)

Risk aversion 0.0006 -0.0162*** -0.0008 0.0003
(0.0101) (0.0045) (0.0077) (0.0016)

Ambiguity aver-
sion

0.0053 0.0038* 0.0006 -0.0002

(0.0033) (0.0015) (0.0018) (0.0007)
Contingent think-
ing ability

-0.0752*** -0.0387*** -0.0114 -0.0045

(0.0206) (0.0085) (0.0110) (0.0033)
Round & Session
FE

✓ ✓ ✓ ✓

R2 0.009 0.097 0.011 0.124 0.009 0.033 0.007 0.014
N 720 720 3255 3255 720 720 3255 3255
Dep. mean 0.693 0.693 0.625 0.625 0.054 0.054 0.042 0.042

Note: This table presents the size of the bias in each round of school choice setup in our baseline group affect students’ strategy in

submitting ROLs. The bias term is formally defined as bias = (u(cd)u − u(cb)u) − (u(cd)c − u(cb)c). The NCEE score is student’s test

score in China’s college entrance exam. The risk attitude and ambiguity aversion are measured following Holt and Laury (2002). The

contingent ability is constructed as summing up the scores for all four questions in Levin et al. (2016). Standard errors in parentheses.

*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: Effects of interventions designed to alleviate correlation
neglect

Aggressive ROL

(1) (2) (3)

Bias 0.0075** 0.0121* 0.0063*
(0.0025) (0.0006) (0.0025)

T1.Reminder 0.1583
(0.1284)

T1.Reminder # bias -0.0007
(0.0018)

T2.Iterative DA -0.0340
(0.0425)

T2.Iterative DA # bias -0.0015***
(0.0000)

T3.Computation -0.8991***
(0.1362)

T3.Computation # bias 0.0026
(0.0022)

Round & session FE ✓ ✓ ✓
Demographic controls ✓ ✓ ✓

Observations 1710 1695 1560
R-squared 0.070 0.181 0.149

Note: This table presents the effects of treatments designed to alleviate

mistakes due to correlation neglect. The bias term is formally defined

as bias = (u(cd)u − u(cb)u) − (u(cd)c − u(cb)c). Standard errors in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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A Online appendix: Experimental instructions

Baseline

Task Description: This part of the experiment is to fill out an admission application. In this

task, in each round, there are four schools for four students to choose from and one person is

admitted to each school, while you as one of the students will choose and fill in the form among the

four schools. Each student’s preferences (favorites) for the four schools are randomly assigned by

the computer with a certain probability, and each person’s preferences are independent, i.e., your

favorite school does not change because of the others’ favorites; the school chooses the student with

the highest score. In each round of the school choice experiment, you make your choice of schools

based on your preferences and in combination with others, filling in what you think is the best. At

the end of each round, you will learn your admissions results, and students who drop out (i.e., are

not admitted to the school of their choice) will be admitted to the school with the same payoff as

the last-place school under that student’s preference. There are twenty rounds of applications in

total, each round being independent and having no effect on each other.

The next experimental process takes place in fixed groups of four, and there are 20 rounds, with

your performance ranked in the third place in each round. Different rounds of the experiment are

conducted independently, i.e., the payoffs in each round are independent. We will randomly select

one of the 20 rounds of payoff as your gain in this task. At the same time, you can see the payoff

you can get by being accepted to each school under your preference. In the experiment, you will

know the probability (p) of which preference the student in the top two is. In this part of the

experimental task, the first- and second-place students are served by a computer that will choose

the top two schools under that preference in order according to the preference they are assigned

(realized with probability p).

The decision you need to make in this experiment is to fill out the application based on your

own ranking and preference, and the probability of other people’s preferences. You can fill in two

different first and second school choices at the same time, but the preference for the first choice

is required to be higher than the second, i.e., in the case of school choice preference type 1 (see

the table below), the first and second volunteers can be school A and school B, respectively; and
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cannot be school B and school A, respectively. The four schools choose the highest ranking among

candidates who declare the same volunteer and do not consider that this is the candidate’s first

choice: The principle of parallel admission.

Four schools: School A, School B, School C and School D.

Admission rules: the principle of the Chinese parallel admission.

School Choice Preferences: There are two school choice preferences, as shown in the following

table:

School choice preference Type 1 School choice preference Type 2

School A > School B > School C > School D School C > School D > School B > School A

In each round of the experiment you will know the school choice preference you were assigned,

but only the probability that the top two students are of which school choice preference. Your

admission to the school ranked first in your school choice preference brings the highest benefit, the

second school brings the next highest benefit, the third school brings the next highest benefit, and

the fourth school (the guaranteed school) brings the last benefit. At the beginning of each round

of decision-making, the computer randomly assigns your preferences. In each of these 20 rounds of

the experiment, your school choice preferences, gains, and the probability of other students’ school

choice preferences may be different. The acceptance results and gains for each round are revealed

at the end of that round so that you can know for each round whether you were accepted to the

school you volunteered for and the corresponding gains. Again, it is important to emphasize that

the only gains from the 20 rounds are the randomly selected rounds that are your gains from the

experiment in this section. The exchange rate of experiment points to cash is 3:1. In addition you

will receive a ¥10 show-up fee.

Admission mechanism details: Suppose Amy’s school choice preference is preference 1 (school A >

school B > school C > school D), and also suppose she ranks first in a group of four. If she fills

in the first preference for school A and the second preference for school B (hereinafter referred to

as ”school A and school B”), she will be admitted to school A with the gain of S(A); if she fills in

school B and school C, she will be admitted to school B with the gain of S(B); if she fills in school
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C and school D, she will be admitted to school C with the gain of S(B); if she fills in school B and

school C, she will be admitted to school D with the gain of S(B). If she fills in school C and school

D, she will be admitted to school C, and the gain is S(C), and so on.

The third-ranked Bob and the first-ranked Amy also have school choice preference 1 (school A >

school B > school C > school D), and Amy chooses school A and school B, and Bob chooses school

B and school C. At this time, for the second-ranked Carl, if he fills in school A and school B, he

will be admitted by school B in the next place, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B). B and gain S(B).

Next, to confirm that you understand our experiment description and rules, you will do a simple test

that will not be correlated with the experiment gains, but simply to make sure that your reading

comprehension of the game rules is not biased. All results in the experiment will be anonymous

and we will keep your decisions in this task strictly confidential. If you have any questions, please

raise your hand to one of our experiment assistants and they will answer your questions as soon as

possible. Please have a calculator ready if needed.

Now for round 1/20 application:

You are school preference type 1 in this round of the school choice experiment.

The admission gain for preference 1 is school A (300)) > school B (20) > school C (15) > school

D (0)

You are ranked third in a group of four (with the computer in fourth place).

There is a 75% probability that the top two ranked students have preference 1.

Please choose two schools as your choice of volunteer (note: two options can not be repeated), four

schools will follow the principle of parallel volunteering to choose the highest score, your admission

results will determine the benefits of your experiment in this round.

Your first choice is

A. School A

B. School B

C. School C
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D. School D

Your second choice is

A. School A

B. School B

C. School C

D. School D
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Reminder

Task Description: This part of the experiment is to fill out an admission application. In this

task, in each round, there are four schools for four students to choose from and one person is

admitted to each school, while you as one of the students will choose and fill in the form among the

four schools. Each student’s preferences (favorites) for the four schools are randomly assigned by

the computer with a certain probability, and each person’s preferences are independent, i.e., your

favorite school does not change because of the others’ favorites; the school chooses the student with

the highest score. In each round of the school choice experiment, you make your choice of schools

based on your preferences and in combination with others, filling in what you think is the best. At

the end of each round, you will learn your admissions results, and students who drop out (i.e., are

not admitted to the school of their choice) will be admitted to the school with the same payoff as

the last-place school under that student’s preference. There are twenty rounds of applications in

total, each round being independent and having no effect on each other.

The next experimental process takes place in fixed groups of four, and there are 20 rounds, with

your performance ranked in the third place in each round. Different rounds of the experiment are

conducted independently, i.e., the payoffs in each round are independent. We will randomly select

one of the 20 rounds of payoff as your gain in this task. At the same time, you can see the payoff

you can get by being accepted to each school under your preference. In the experiment, you will

know the probability (p) of which preference the student in the top two is. In this part of the

experimental task, the first and second place students are served by a computer that will choose

the top two schools under that preference in order according to the preference they are assigned

(realized with probability p).

The decision you need to make in this experiment is to fill out the application based on your

own ranking and preference, and the probability of other people’s preferences. You can fill in two

different first and second school choices at the same time, but the preference for the first choice

is required to be higher than the second, i.e., in the case of school choice preference type 1 (see

the table below), the first and second volunteers can be school A and school B, respectively; and

cannot be school B and school A, respectively. The four schools choose the highest ranking among
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candidates who declare the same volunteer, and do not consider that this is the candidate’s first

choice: The principle of parallel admission.

Four schools: School A, School B, School C and School D.

Admission rules: the principle of the Chinese parallel admission.

School Choice Preferences: There are two school choice preferences, as shown in the following

table:

School choice preference Type 1 School choice preference Type 2

School A > School B > School C > School D School C > School D > School B > School A

In each round of the experiment you will know the school choice preference you were assigned,

but only the probability that the top two students are of which school choice preference. Your

admission to the school ranked first in your school choice preference brings the highest benefit, the

second school brings the next highest benefit, the third school brings the next highest benefit, and

the fourth school (the guaranteed school) brings the last benefit. At the beginning of each round

of decision making, the computer randomly assigns your preferences. In each of these 20 rounds of

the experiment, your school choice preferences, gains, and the probability of other students’ school

choice preferences may be different. The acceptance results and gains for each round are revealed

at the end of that round, so that you can know for each round whether you were accepted to the

school you volunteered for and the corresponding gains. Again, it is important to emphasize that

the only gains from the 20 rounds are the randomly selected rounds that are your gains from the

experiment in this section. The exchange rate of experiment points to cash is 3:1. in addition you

will receive a ¥10 show-up fee.

Admission mechanism details: Suppose Amy’s school choice preference is preference 1 (school A >

school B > school C > school D), and also suppose she ranks first in a group of four. If she fills

in the first preference for school A and the second preference for school B (hereinafter referred to

as ”school A and school B”), she will be admitted to school A with the gain of S(A); if she fills in

school B and school C, she will be admitted to school B with the gain of S(B); if she fills in school

C and school D, she will be admitted to school C with the gain of S(B); if she fills in school B and
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school C, she will be admitted to school D with the gain of S(B). If she fills in school C and school

D, she will be admitted to school C, and the gain is S(C), and so on.

The third-ranked Bob and the first-ranked Amy also have school choice preference 1 (school A >

school B > school C > school D), and Amy chooses school A and school B, and Bob chooses school

B and school C. At this time, for the second-ranked Carl, if he fills in school A and school B, he

will be admitted by school B in the next place, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B). B and gain S(B).

Next, to confirm that you understand our experiment description and rules, you will do a simple test

that will not be correlated with the experiment gains, but simply to make sure that your reading

comprehension of the game rules is not biased. All results in the experiment will be anonymous

and we will keep your decisions in this task strictly confidential. If you have any questions, please

raise your hand to one of our experiment assistants and they will answer your questions as soon as

possible. Please have a calculator ready if needed.

Now for round 1/20 application:

You are school preference type 1 in this round of the school choice experiment.

The admission gain for preference 1 is school A (300) > school B (20) > school C (15) > school D

(0)

You are ranked third in a group of four (with the computer in fourth place).

There is a 75% probability that the top two ranked students have preference 1.

Please choose two schools as your choice of volunteer (note: two options can not be repeated), four

schools will follow the principle of parallel volunteering to choose the highest score, your admission

results will determine the benefits of your experiment in this round.

Hint: Please note the possible correlation between being accepted to the second choice and being

accepted to the first choice school.

Please estimate the probability that you will be accepted to the second choice of your applications

if you are not accepted to the first choice. (1-100)% .

Your first choice is
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A. School A

B. School B

C. School C

D. School D

Your second choice is

A. School A

B. School B

C. School C

D. School D
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Iterative DA

Task Description: This part of the experiment is to fill out an admission application. In this

task, in each round, there are four schools for four students to choose from and one person is

admitted to each school, while you as one of the students will choose and fill in the form among the

four schools. Each student’s preferences (favorites) for the four schools are randomly assigned by

the computer with a certain probability, and each person’s preferences are independent, i.e., your

favorite school does not change because of the others’ favorites; the school chooses the student with

the highest score. In each round of the school choice experiment, you make your choice of schools

based on your preferences and in combination with others, filling in what you think is the best. At

the end of each round, you will learn your admissions results, and students who drop out (i.e., are

not admitted to the school of their choice) will be admitted to the school with the same payoff as

the last-place school under that student’s preference. There are twenty rounds of applications in

total, each round being independent and having no effect on each other.

The next experimental process takes place in fixed groups of four, and there are 20 rounds, with

your performance ranked in the third place in each round. Different rounds of the experiment are

conducted independently, i.e., the payoffs in each round are independent. We will randomly select

one of the 20 rounds of payoff as your gain in this task. At the same time, you can see the payoff

you can get by being accepted to each school under your preference. In the experiment, you will

know the probability (p) of which preference the student in the top two is. In this part of the

experimental task, the first and second place students are served by a computer that will choose

the top two schools under that preference in order according to the preference they are assigned

(realized with probability p).

The decision you need to make in this experiment is to fill out the application based on your

own ranking and preference, and the probability of other people’s preferences. You can fill in

two different first and second school choices, respectively; but the preference for the first choice

is required to be higher than the second, i.e., in the case of school choice preference type 1 (see

the table below), the first and second volunteers can be school A and school B, respectively; and

cannot be school B and school A, respectively. The four schools choose the highest ranking among
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candidates who declare the same volunteer, and do not consider that this is the candidate’s first

choice: The principle of parallel admission.

Four schools: School A, School B, School C and School D.

Admission rules: the principle of the Chinese parallel admission.

School Choice Preferences: There are two school choice preferences, as shown in the following

table:

School choice preference Type 1 School choice preference Type 2

School A > School B > School C > School D School C > School D > School B > School A

In each round of the experiment you will know the school choice preference you were assigned,

but only the probability that the top two students are of which school choice preference. Your

admission to the school ranked first in your school choice preference brings the highest benefit, the

second school brings the next highest benefit, the third school brings the next highest benefit, and

the fourth school (the guaranteed school) brings the last benefit. At the beginning of each round

of decision making, the computer randomly assigns your preferences. In each of these 20 rounds of

the experiment, your school choice preferences, gains, and the probability of other students’ school

choice preferences may be different. The acceptance results and gains for each round are revealed

at the end of that round, so that you can know for each round whether you were accepted to the

school you volunteered for and the corresponding gains. Again, it is important to emphasize that

the only gains from the 20 rounds are the randomly selected rounds that are your gains from the

experiment in this section. The exchange rate of experiment points to cash is 3:1. in addition you

will receive a ¥10 show-up fee.

Admission mechanism details: Suppose Amy’s school choice preference is preference 1 (school A >

school B > school C > school D), and also suppose she ranks first in a group of four. If she fills

in the first preference for school A and the second preference for school B (hereinafter referred to

as ”school A and school B”), she will be admitted to school A with the gain of S(A); if she fills in

school B and school C, she will be admitted to school B with the gain of S(B); if she fills in school

C and school D, she will be admitted to school C with the gain of S(B); if she fills in school B and
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school C, she will be admitted to school D with the gain of S(B). If she fills in school C and school

D, she will be admitted to school C, and the gain is S(C), and so on.

The third-ranked Bob and the first-ranked Amy also have school choice preference 1 (school A >

school B > school C > school D), and Amy chooses school A and school B, and Bob chooses school

B and school C. At this time, for the second-ranked Carl, if he fills in school A and school B, he

will be admitted by school B in the next place, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B). B and gain S(B).

Next, to confirm that you understand our experiment description and rules, you will do a simple test

that will not be correlated with the experiment gains, but simply to make sure that your reading

comprehension of the game rules is not biased. All results in the experiment will be anonymous

and we will keep your decisions in this task strictly confidential. If you have any questions, please

raise your hand to one of our experiment assistants and they will answer your questions as soon as

possible. Please have a calculator ready if needed.

Now for round 1/20 application:

You are school preference type 1 in this round of the school choice experiment.

The admission gain for preference 1 is school A (300) > school B (20) > school C (15) > school D

(0)

You are ranked third in a group of four (with the computer in fourth place).

There is a 75% probability that the top two ranked students have preference 1.

Please choose two schools in two steps (Note: two choices can not be the same), four schools will

follow the principle of parallel admission to choose the highest rank, your admission results will

determine the benefits of your experiment in this round.

Your first choice is

A. School A

B. School B

C. School C

D. School D
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———————–

You have not been accepted to the first choice of schools, please select your second choice

(Or you have been accepted by your first choice! Now, how would you choose your second choice

were you not accepted to your first choice?)

Your second choice is

A. School A

B. School B

C. School C

D. School D
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Computation

Task Description: This part of the experiment is to fill out an admission application. In this

task, in each round, there are four schools for four students to choose from and one person is

admitted to each school, while you as one of the students will choose and fill in the form among the

four schools. Each student’s preferences (favorites) for the four schools are randomly assigned by

the computer with a certain probability, and each person’s preferences are independent, i.e., your

favorite school does not change because of the others’ favorites; the school chooses the student with

the highest score. In each round of the school choice experiment, you make your choice of schools

based on your preferences and in combination with others, filling in what you think is the best. At

the end of each round, you will learn your admissions results, and students who drop out (i.e., are

not admitted to the school of their choice) will be admitted to the school with the same payoff as

the last-place school under that student’s preference. There are twenty rounds of applications in

total, each round being independent and having no effect on each other.

The next experimental process takes place in fixed groups of four, and there are 20 rounds, with

your performance ranked in the third place in each round. Different rounds of the experiment are

conducted independently, i.e., the payoffs in each round are independent. We will randomly select

one of the 20 rounds of payoff as your gain in this task. At the same time, you can see the payoff

you can get by being accepted to each school under your preference. In the experiment, you will

know the probability (p) of which preference the student in the top two is. In this part of the

experimental task, the first and second place students are served by a computer that will choose

the top two schools under that preference in order according to the preference they are assigned

(realized with probability p).

The decision you need to make in this experiment is to fill out the application based on your

own ranking and preference, and the probability of other people’s preferences. You can fill in two

different first and second school choices at the same time, but the preference for the first choice

is required to be higher than the second, i.e., in the case of school choice preference type 1 (see

the table below), the first and second volunteers can be school A and school B, respectively; and

cannot be school B and school A, respectively. The four schools choose the highest ranking among
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candidates who declare the same volunteer, and do not consider that this is the candidate’s first

choice: The principle of parallel admission.

Four schools: School A, School B, School C and School D.

Admission rules: the principle of the Chinese parallel admission.

School Choice Preferences: There are two school choice preferences, as shown in the following

table:

School choice preference Type 1 School choice preference Type 2

School A > School B > School C > School D School C > School D > School B > School A

In each round of the experiment you will know the school choice preference you were assigned,

but only the probability that the top two students are of which school choice preference. Your

admission to the school ranked first in your school choice preference brings the highest benefit, the

second school brings the next highest benefit, the third school brings the next highest benefit, and

the fourth school (the guaranteed school) brings the last benefit. At the beginning of each round

of decision making, the computer randomly assigns your preferences. In each of these 20 rounds of

the experiment, your school choice preferences, gains, and the probability of other students’ school

choice preferences may be different. The acceptance results and gains for each round are revealed

at the end of that round, so that you can know for each round whether you were accepted to the

school you volunteered for and the corresponding gains. Again, it is important to emphasize that

the only gains from the 20 rounds are the randomly selected rounds that are your gains from the

experiment in this section. The exchange rate of experiment points to cash is 3:1. in addition you

will receive a ¥10 show-up fee.

Admission mechanism details: Suppose Amy’s school choice preference is preference 1 (school A >

school B > school C > school D), and also suppose she ranks first in a group of four. If she fills

in the first preference for school A and the second preference for school B (hereinafter referred to

as ”school A and school B”), she will be admitted to school A with the gain of S(A); if she fills in

school B and school C, she will be admitted to school B with the gain of S(B); if she fills in school

C and school D, she will be admitted to school C with the gain of S(B); if she fills in school B and
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school C, she will be admitted to school D with the gain of S(B). If she fills in school C and school

D, she will be admitted to school C, and the gain is S(C), and so on.

The third-ranked Bob and the first-ranked Amy also have school choice preference 1 (school A >

school B > school C > school D), and Amy chooses school A and school B, and Bob chooses school

B and school C. At this time, for the second-ranked Carl, if he fills in school A and school B, he

will be admitted by school B in the next place, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B); if he fills in school B and

school C, he will still be admitted by school B, and the gain is S (B). B and gain S(B).

Next, to confirm that you understand our experiment description and rules, you will do a simple test

that will not be correlated with the experiment gains, but simply to make sure that your reading

comprehension of the game rules is not biased. All results in the experiment will be anonymous

and we will keep your decisions in this task strictly confidential. If you have any questions, please

raise your hand to one of our experiment assistants and they will answer your questions as soon as

possible. Please have a calculator ready if needed.

Now for round 1/20 application:

You are school preference type 1 in this round of the school choice experiment.

The admission gain for preference 1 is school A (300) > school B (20) > school C (15) > school D

(0)

You are ranked third in a group of four (with the computer in fourth place).

There is a 75% probability that the top two ranked students have preference 1.

Please choose two schools as your choice of volunteer (note: two options can not be repeated), four

schools will follow the principle of parallel volunteering to choose the highest score, your admission

results will determine the benefits of your experiment in this round.

Based on the probability of other ranked students’ preference categories and their application

strategies, the probability of admission corresponding to your choice is:

- First choice is A and the second choice is B, then the probability of admission to the first choice

is: 6.25%; the probability of admission to the second choice is: 40.0%;

- If the first choice is A and the second choice is C, the probability of admission to the first choice
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is: 6.25%; the probability of admission to the second choice is: 60.0%;

- If the first choice is A and the second choice is D, the probability of admission to the first choice

is: 6.25%; the probability of admission to the second choice is: 100.0%;

- If the first choice is B and the second choice is C, the probability of admission to the first choice

is 44.0%; the probability of admission to the second choice is 100.0%;

- If the first choice is B and the second choice is D, the probability of admission to the first choice

is 44.0%; the probability of admission to the second choice is 100.0%;

- If the first choice is C and the second choice is D, the probability of admission to the first choice

is 56.0% and the probability of admission to the second choice is 82.0%.

Your first choice is

A. School A

B. School B

C. School C

D. School D

Your second choice is

A. School A

B. School B

C. School C

D. School D
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Contingent Thinking Questions

Scenario 1

There are two cards, one is black on both sides and the other is black on one side and white on the

other. We take any one of these two cards, and then we make the selected card face up on either

side. You can see the face-up side of the card on your screen, and the color of the face-up card is

black. Please give the probability that you think the back side of the card is black. You can enter

a number from 0 to 100 in the space below to represent the percentage probability you think, then

click ”OK”. For example, the number 40 means that you think the odds of the back side of the

card being black are 40%, or 0.4; the number 60 means that you think the odds of the back side of

the card being black are 60%, or 0.6, and so on.

Your gain in this task depends on the amount of difference between your answer and the correct

answer. If your answer is exactly the correct answer or deviates by less than 1 percentage point,

you will receive a cash reward of ¥1. If your answer deviates by between 1 and 5 percentage points,

you will receive a cash reward of ¥0.50; for all other answers, you will only receive ¥0.

The probability that the color of this side of the card with the back side down is black is

(0-100, can be accurate to two decimal places) %. [Correct Answer: 66.67]

Scenario 2

Similarly, there are two cards, one is black on both sides and the other is black on one side and

white on the other. We draw any one of these two cards, and then arbitrarily leave one side of the

selected card face up. Suppose a calculating player cannot currently see the face-up card, but must

guess whether the back-side down card is black or white, and if her guess is correct she wins a prize

of 60 RMB. Now our question is how much do you think this savvy player would be willing to pay

to learn the color of the face-up card. Please give us what you think the player thinks the value of

the information about the color of the face-up card is (in RMB) by putting a number from 0 to 60

in the space below to represent the value you think it is and then clicking ”OK”.

Your profit in this task depends on the amount of difference between your answer and the correct

answer. If your answer is exactly the correct answer or is less than 1 percentage point off, you will

receive a ¥1 cash prize; if your answer is between 1 and 5 percentage points off, you will receive a
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¥0.50 cash prize; for all other answers, you will only receive ¥0.

You think this player thinks the value of the information about the color of the face-up card is

(0 - 60) dollars.

[Correct Answer: 0]

Scenario 3

There are three cards, one that is black on both sides, another that is black on one side and white

on the other, and another that is white on both sides. Let’s take any one of these three cards, and

then let any one of the selected cards face up. You can see the face-up side of the card on your

screen, and the color of the face-up card is black. Please give the probability that you think the

back side of the card is black. You can enter a number from 0 to 100 in the space below to represent

the percentage probability you think, then click ”OK”. For example, the number 40 means that

you think the odds of the back side of the card being black are 40%, or 0.4; the number 60 means

that you think the odds of the back side of the card being black are 60%, or 0.6, and so on.

Your gain in this task depends on the amount of difference between your answer and the correct

answer. If your answer is exactly the correct answer or deviates by less than 1 percentage point,

you will receive a cash reward of ¥1. If your answer deviates by between 1 and 5 percentage points,

you will receive a cash reward of ¥0.50; for all other answers, you will only receive ¥0.

The probability that the color of this side of the card with the back side down is black is

(0-100, can be accurate to two decimal places) %. [Correct Answer: 66.67]

Scenario 4

Again, there are three cards, one is black on both sides, another is black on one side and white

on the other, and one is white on both sides. We draw any one of these three cards and then

arbitrarily make this selected card face up on one of its sides. Suppose a calculating player cannot

see the face-up card at the moment, but must guess whether the back-side down card is black or

white, and if her guess is correct she will be rewarded 60 RMB. Now our question is how much do

you think this savvy player would be willing to pay to learn the color of the face-up card. Please

give us what you think the player thinks the value of the information about the color of the face-up

card is (in RMB) by putting a number from 0 to 60 in the space below to represent the value you
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think it is and then clicking ”OK”.

Your profit in this task depends on the amount of difference between your answer and the correct

answer. If your answer is exactly the correct answer or is less than 1 percentage point off, you will

receive a ¥1 cash reward; if your answer is between 1 and 5 percentage points off, you will receive

a ¥0.50 cash reward; for all other answers, you will only receive ¥0.

Do you think this player thinks the value of the information about the color of the face-up card is

(0 - 60) yuan.

[Correct answer: 10].
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Raven’s Advanced Progressive Matrices-IQ test

(1) Observe the two small boxes at the top. Can you see how the shapes in the two small boxes

are related? Then, according to this relationship, can you find the shape of the figure in the small

box in the lower right dashed line?

(2) Please look at the figure below, there is a small piece of the figure missing, can you find it?

(3) Please observe the two small boxes at the top, can you see what consistent features they have?

Next, please look at the two small boxes at the bottom. When the dotted line in the lower right

corner looks like what, the small box below and the small box above can show similar characteristics?
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(4) Look at the two small boxes in the first row. Can you see how they are related? Can you find

the graph inside the dotted line according to this rule?

(5) Look at the graph below. One piece of the graph is missing.
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(Solutions: B, C, A, C, B)
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Risk Attitude Task

At the bottom of this page, you will see a table with 10 rows, each row corresponding to a question

numbered from 1 to 10. each question has Choice A and Choice B. Choice A and Choice B offer

different chances to win.

The computer draws a random number between 1 and 10. The question corresponding to the

number is used to determine your final earnings.

Your final payout is determined by the computer’s roll of a virtual 10-sided die and your choice

(A or B) for that question. each number from 1 to 10 has the same probability of appearing.

You don’t need to choose A or B for every question; you just need to tell us where you would

like to start with B (instead of A).

Do you have any questions about the above rules of the game?

Table A.1: Risk attitude table

Scenario Option A Choice Option B Choice
1 Dice number 1 (¥10)

Dice number 2-10 (¥8)
Dice number 1 (¥19.25)
Dice number 2-10 (¥0.5)

2 Number 1-2 (¥10)
Number 3-10 (¥8)

Number 1-2 (¥19.25)
Number 3-10 (¥0.5)

3 Number 1-3 (¥10)
Number 4-10 (¥8)

Number 1-3 (¥19.25)
Number 4-10 (¥0.5)

4 Number 1-4 (¥10)
Number 5-10 (¥8)

Number 1-4 (¥19.25)
Number 5-10 (¥0.5)

5 Number 1-5 (¥10)
Number 6-10 (¥8)

Number 1-5 (¥19.25)
Number 6-10 (¥0.5)

6 Number 1-6 (¥10)
Number 7-10 (¥8)

Number 1-6 (¥19.25)
Number 7-10 (¥0.5)

7 Number 1-7 (¥10)
Number 8-10 (¥8)

Number 1-7 (¥19.25)
Number 8-10 (¥0.5)

8 Number 1-8 (¥10)
Number 9-10 (¥8)

Number 1-8 (¥19.25)
Number 9-10 (¥0.5)

9 Number 1-9 (¥10)
Dice number 10 (¥8)

Number 1-9 (¥19.25)
Dice number 10 (¥0.5)

10 Dice number 10 (¥10) Dice number 1-10 (¥19.25)

From which point on, you switch from Option A to Option B?
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Ambiguity Aversion Task

Now there are two opaque jars C and D. Each jar contains 100 red or black balls. The 50 balls in

jar C are red and the other 50 are black; while the 100 balls in jar D are also red and black, but

exactly how many balls are red or how many balls are black is unknown.

First, you will choose a color, red or black, as your lucky color. Next, you will randomly choose

one of the two jars and draw a small ball, if you draw the small ball and your lucky color, then you

will get the corresponding reward; if you draw the small ball and your selected lucky color is not

the same, then you will not get this part of the reward.

Similar to task 1, on the screen we will give the color composition of the balls in jar C and jar D for

different scenarios, specifically, there are 20 scenarios in total. In each scenario, you pick whether

to choose jar C or jar D based on the lucky color you choose.

At the end of the experiment, we will be similar to Task 1, first a scenario will be randomly selected,

then a small ball will be randomly selected in that jar you chose, and if the color of the small ball

is the same as the lucky color you chose, then you will be rewarded accordingly. The amount of

reward is different under each scenario. The specific details of the reward will be detailed in the

next part, please read carefully.

First, please choose your lucky color:

1) Red

2) Black

Please remember your lucky color. Next, you will make the decision to choose the jar in 20

consecutive scenarios, if the color of the ball in the last randomly selected scenario matches your

lucky color, then you will get the corresponding reward, the reward under each scenario is different,

please read carefully.

From which scenario on, you switch from Jar C to Jar D?
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Table A.2: Ambiguity aversion table

Scenario Jar C
(50 red balls, 50 black balls)

Choose
C

Choose
D

Jar D
(100 balls, ? red balls, ? black balls)

1 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥8.2
Not selected ¥0

2 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥8.6
Not selected ¥0

3 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥9
Not selected ¥0

4 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥9.4
Not selected ¥0

5 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥9.8
Not selected ¥0

6 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥10.2
Not selected ¥0

7 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥10.6
Not selected ¥0

8 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥11
Not selected ¥0

9 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥11.4
Not selected ¥0

10 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥11.8
Not selected ¥0

11 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥12.2
Not selected ¥0

12 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥12.6
Not selected ¥0

13 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥13
Not selected ¥0

14 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥13.4
Not selected ¥0

15 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥13.8
Not selected ¥0

16 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥14.2
Not selected ¥0

17 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥14.6
Not selected ¥0

18 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥15
Not selected ¥0

19 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥15.4
Not selected ¥0

20 Pick lucky color ¥10
Not selected ¥0

Pick lucky color ¥15.8
Not selected ¥0

56



Exit Survey

1. Your gender is

A. male

B. Female

2. Your age is (number, integers between 10-99)

3. Your family hukou type is

A. Urban hukou

B. Rural hukou

C. Other

4. Your grade level is

A. Freshman

B. Sophomore

C. Junior

D. Senior

E. Master’s degree

F. Doctor

G. Other

5. You took the entrance exam in year ? (Programming upper and lower limits: numbers,

integers between 2000 and 2022)

6. What was your score in the college entrance examination? (Programming upper and lower

limits: numbers, integers between 100 and 1000)

7. In which province or city did you take the college entrance exam? province city

8. Do you think the guidebook or similar materials for the college entrance examination are helpful

in filling out the college entrance examination, ranked from 0 (not useful) to 5 (very useful), and to

what extent did the guidebook help you to fill out the college entrance examination? (Programming:

6 options and no materials provided, total of 7 options, single choice)

9. Which place (first, second, or third) did you rank your current university when you applied to

colleges?
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10. Can you attend a better university than your current university with your score (if you do not

consider your major)? (Yes/No/Unsure, single choice)

11. If your province has adopted parallel admission rule, please answer: Do you think you were

not able to attend a better university because you were too conservative in your first and second

choices? (Yes/No/Don’t know/Non-parallel admission, single choice)

12. If your province adopted parallel admission rule, please answer: Do you think you did

not get into a better university because you were too aggressive in the first few applications?

(Yes/No/Unsure/Non-parallel admission, single choice)

Do you agree that there should be a certain gradient in applications? (Yes/No/Don’t know, single

choice)

14. Do you think being rejected by the first choice will affect your choice of the second volunteer?

(Yes/No/Don’t know, single choice)

15. If you were to use the one-by-one method of applications, that is, after filling out the first

choice and learning that you were not accepted then filling out the second choice and so on until

you were accepted to a particular school, do you think this method would get you into the right

school better than parallel admission rule? (Yes/No/Unsure, single choice)

58


	Introduction
	The school choice problem
	A theoretical framework of correlation neglect
	The school choice task

	Experimental design
	Treatment groups
	Experimental procedures

	Results
	Identification of correlation neglect
	Treatment effects

	Concluding remarks
	Online appendix: Experimental instructions

